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Abstract

Band gaps in two- and three-dimensional photonic crystals are hard to achieve
due to the limited contrast in the dielectric permeability available with con-
ventional dielectric materials. The situation changes for periodic arrange-
ments of scatterers consisting of materials with a Drude-like behaviour of
the dielectric function. We show for two-dimensional square and triangu-
lar lattices that such systems have complete in-plane photonic band gaps
(CPBG’s) below infrared wavelengths. Of the two geometries, the optimal
one for ideal Drude-like behaviour is a square lattice, whereas for Drude-
like behaviour in silver, using experimental data?’, the optimal geometry
is a triangular lattice. If the lattice spacing is tuned to a characteristic
plasma wavelength, several CPBG’s open in the spectrum and their rela-
tive gap width can be as large as 36.9% (9.9% in a nonabsorptive win-

dow) even if the host dielectric constant e, = 1. Such structures can



provide CPBG structures with bandgaps down to ultraviolet wavelengths.
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I. INTRODUCTION

There has been a growing interest in photonic crystals, i. e., structures with a period-
ically modulated dielectric constant. Such structures open up new ways of manipulating
electromagnetic wave emission and propagation processes [1]. In fact, there is a common be-
lief that, in the near future, photonic crystals systems will allow us to control light in much
the same way as electrons can be controlled in ordinary crystals [1]. They also promise
to become a laboratory for testing fundamental processes involving interactions of radia-
tion with matter under novel conditions. In analogy with an electron moving in a periodic
potential, propagation at certain frequencies can become impossible inside of a photonic
crystal, independent of photon polarization and the direction of propagation - a complete
photonic bandgap (CPBG) [2,3]. The presence of a CPBG severely modifies the quantum
electrodynamics as compared to the vacuum case. This offers the possibility of controlling
the spontaneous emission of embedded atoms and molecules in volumes much greater than
the emission wavelength [5]. For many technological applications it is enough to achieve
a photonic bandgap (PBG) for in-plane propagation and, for applications involving highly
polarized light sources, it can be sufficient to obtain a PBG for a single polarization only
(Note that for in-plane propagation, the two photon polarizations do not mix and Maxwell’s
equations reduce to two scalar equations, one for each polarization.). Numerous applications
have been suggested involving two-dimensional (2D) photonic structures, i.e., new designs
for light-emitting diodes [6], polarizers [7], high transmission through sharp bends [8], effi-
cient bandpass filters, channel drop filters, and, in one-dimension (1D), waveguide crossing
without cross-talk [9].

In the following, we shall focus on 2D photonic structures. For such structures, only
an in-plane CPBG can ensure light propagation control whatever the in-plane light propa-
gation. Unfortunately, fabrication of photonic crystals with such a gap poses a significant
technological challenge for 2D structures already in the near-infrared [10], not to speak about

3D photonic structures [11]. A 2D photonic crystal can be thought of as a 2D periodic ar-



rangement of scatterers with a dielectric constant ¢; embedded in a host with a dielectric
constant £,. In view of the scale invariance present in Maxwell’s equations it makes sense
to introduce the relative gap width g,, as the gap width-to-midgap frequency ratio, Aw/wp,.
Practical crystals are expected to have g, larger than a few per cent - to leave a margin
for gap-edge distortions due to omnipresent impurities and yet to have a CPBG useful for
applications. Then the dielectric contrast § = max (g,,/e., £./€n) ~ 8 is required to open a
CPBG with g, = 6% [12]. Unfortunately, this required dielectric contrast is rather large
and strongly limits the choice of available materials in the visible.

The main goal of the present article is to demonstrate that practical CPBG’s can already
open for the simplest lattice and scatterer geometries, as long as the scatterer dielectric
function is rightly chosen. Therefore, we shall discuss only square and triangular lattices
of infinitely long cylindrical scatterers with circular cross section and with one cylinder per
lattice unit cell. Even then, for instance, in a two-dimensional square lattice of cylinders for
a cylinder filling fraction of 65% in a silica host (see Fig. 1), several CPBG’s open, one of
them larger than 11.4% and another larger than 35%, provided that cylinders are made out

of material with a Drude-like dielectric function [13,14],
(@) = 1— w2/, 1)

where wy, is called the plasma frequency. Note that the Drude-like dielectric function is zero
for w = w, which makes ¢ infinite and enables one to avoid the restrictions on the dielectric
contrast. This approach has been shown to work also for three-dimensional (3D) photonic
structures [15].

A Drude-like behaviour of e4(w) is typical for metals and semiconductors. For notational
simplicity we shall often refer to a scatterer having such a dielectric function (1) as a metallic
one, although we are aware that (i) not all metals show a Drude-like behaviour and (ii) such
a behaviour can also be found in new artificial structures [16]. Then the proposed structures
could be realized by introducing, for instance, by electrochemical deposition, a Drude-like

material into the holes of a periodic structure of air holes in a dielectric, a structure that
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has no CPBG without the Drude-like material inserted (see Fig. 1).

Metals can be quite lossy at optical frequencies. Nevertheless, the absorption can be
rather rather small in a certain frequency window, where the metal behaves as a highly
dispersive dielectric. Typically, the plasma wavelength A\, = 2mc/w,, where c is the speed of
light in vacuum, is closer to the short-wavelength edge of the nonabsorptive window, since for
shorter wavelengths there is a higher probability to induce electronic interband transitions.
We restricted our investigation mainly to the “nonabsorptive” window (0.5w, < w < 1.1w,
for the ideal Drude behaviour; 310 — 520 nm for silver [17]) which explains why the main
part of the band structure shown in our figures is below the plasma frequency. Fortunately,
this is also the region where one finds most of CPBG’s. In real systems, such as silver, a
deviation from the ideal Drude behaviour occurs in particular in the proximity of the zero
crossing of Re € at some A, (A, = 328 nm for silver). Such a A, is red-shifted compared to
Ap (Ap & A, /1.9 for silver) [17] and the band structure between A, and A, can be modified as
compared to the ideal Drude behaviour (1). We studied both square and triangular lattices,
the Bravais lattices that have Brillouin zones that come closest to a circle, and hence are
expected to give rise to the biggest band gaps. We find that for an ideal Drude-like material
a square lattice leads to the biggest gaps of the two studied lattice types. However, the
deviation of the dielectric function of silver from the ideal Drude behaviour makes that for
silver triangular lattices result in bigger CPBG’s than square lattices. In both cases, i.e.
ideal Drude/square and silver/triangular, a CPBG with g, ~ 10% is found even for a host

dielectric constant ¢, as low as ¢, = 1.

II. METHOD

We performed band-structure calculations using a 2D analogue of the familiar Korringa-
Kohn-Rostocker (KKR) method [18]. Since, for in-plane propagation, the two photon polar-
izations decouple, the calculation reduces to the use of the ordinary 2D scalar KKR method

for either polarization. This polarization decoupling is specific to 2D and obviously is not



the case for 3D photonic structures where a truly vectorial KKR method is required [19].
Given a plasma frequency wy,, we performed calculations for frequencies from ~ 0.5w, up
to 1.1wp, assuming ¢;, is constant in this frequency region. In contrary to the plane-wave
method [4,7], dispersion does not cause any difficulties to the KKR method and computa-
tional time is the same as without dispersion. Also (cf. [7]) the calculation is not limited
to the case of a small metallic volume fraction of f < 1% and one can safely proceed up to
the case of closely-packed metallic cylinders. Last but not least, there are no problems in
obtaining convergence for the so-called flat bands first encountered in [7]. In order to ensure
precision of around 0.1%, cylindrical waves were included with angular momentum up to
lmaz = 24. This means that the size of a typical secular matrix is reduced by a factor of

almost 10 as compared to the plane-wave method [7].

ITII. RESULTS FOR AN IDEAL DRUDE METAL

The qualitative behaviour of the band structure for a 2D periodic arrangement of Drude-
like scatterers is similar to that in 3D [15]. The plasma wavelength sets a characteristic scale,
and, correspondingly, bandgaps only occur for certain values of r./\,, or, a/\,, where r, and
a is the cylinder radius and lattice constant, respectively. Of the two geometries studied, a
square lattice is optimal for a Drude metal. Then a CPBG with g,, nearly 10% opens even

if 5, is as low as ¢, = 1. Other noteworthy points in case of ¢, = 1 are
1. no or only tiny CPBG’s for a/), < 0.9
2. no CPBG’s bigger than 5% below a/), <1

3. for f fixed, a CPBG g, grows rapidly with a/A, until a/\, ~ 1.1 is reached, with
the optimal filling fraction being 60% < f < 70%; for a/\, ~ 1.1 the gap width g,

increases only marginally and, beyond a/\, =~ 1.47, g,, decreases

4. no CPBG with g,, > 5% exists for a/), > 2



5. a CPBG with ¢, > 5% can be achieved for 43% < f < 77%

For ¢), = 1, the biggest g, is found to be 9.9% for f = 65% and a/\, ~ 1.47. When
silica (e, = 2.16) is used as the host, the maximal gap width can be increased further.
For example, a structure with f = 65%, ¢, = 1, and a/\, = 1.1 exhibits a CPBG with
Jw = 8.7%, whereas for ¢, = 2.16 this CPBG width increases to g, = 11.4%.

Besides the CPBG’s mentioned above, we also found very big CPBG’s at lower frequen-
cies, outside the “nonabsorptive” window, typically at midgap frequencies of 20% of the
plasma frequency. For instance, in case of the structure of Fig. 1b for ¢, = 2.16, we found
a CPBG with g, = 35% at wy,,/w, = 0.217 (g, = 36.9% at w,,/w, = 0.213 for ¢, = 1).

For a triangular lattice one encounters more CPBG’s. However, the maximal g¢,, found

was 3.5%.

IV. RESULTS FOR SILVER

For silver we used the experimental data from Palik [20]. The deviation from the ideal
Drude behaviour, which occurs in the proximity of the zero crossing of Re € at A, = 328 nm
[17], makes that for silver a triangular lattice leads to bigger CPBG’s than a square lattice.
For a fixed f, the relative gap width g, increases with increasing a/\, (or with a/\,)
until a/A, ~ 2 (a/A, ~ 1.1) is reached. Afterwards CPBG’s fall into region of increased
absorption. Interestingly, a/\,,, where A, is the midgap wavelength, stays close to unity:
a/Am =~ 0.9 for ¢ = 329 nm and a/\,, = 1.1 for a = 650 nm.

For a fixed lattice constant ¢ = 650 nm we found the biggest CPBG, with g, = 11.7%,
for f = 58%, with the entire CPBG still lying in the “nonabsorbing” frequency window
(see Fig. 3). Note that in this case the distance between the silver cylinders is ~ 115 nm.
Manufacturing of such a structure is realistic, since the minimal dielectric width between
two cylinders technologically realized in semiconductors such as GaAs is 30 nm [21]. The
dependence of the largest CPBG’s band-gap-edges and g, on ¢, for f = 58% and a = 650

nm is shown in Fig. 2. The figure shows that as €, increases, g,, saturates at ~ 12.5%.
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For a square lattice, much smaller CPBG’s are found with g¢,, < 4%.

V. DISCUSSION

We aimed at showing that practical in-plane CPBG’s can open for the simplest 2D
lattice and scatterer geometries, as long as the scatterer dielectric function is rightly chosen.
Our proposal in using scatterers with a metallic Drude-like dielectric function (1) offers
a new and promising way to fabricate 2D structures with a practical CPBG in the wide
frequency range from GHz to ultraviolet. Indeed, a typical plasma frequency of a metal is
in ultraviolet, whereas that of a semiconductor in the infrared. On the other hand, it has
been shown [16] that a whole new class of artificial materials can be fabricated in which the
plasma frequency may be reduced by up to 6 orders of magnitude compared to conventional
materials, from UV down to GHz frequencies. Correspondingly, the proposed structures can
provide CPBG structures in this frequency range. The observed magnitude and robustness
of the in-plane CPBG of the metallo-dielectric structures allows one to speculate that an
inclusion of metallic (silver) wires could also boost the perfomance of the photonic crystal
fibre designed by Knight et al [22]. The photonic crystal fibre [22] is a 2D photonic periodic
arrangement of thin cylindrical glass fibres where the light is sent along the cylinder axis.
In lateral directions, the localization of light is achieved in complete analogy to the case of
electrons: It is possible to introduce a defect at the center of the photonic crystal fibre, for
instance by omitting one cylinder, such that it induces a transversaly localized mode with
frequency within a 2D CPBG. The light can then propagate with that frequency along the
cylinder axis even if the core of the photonic crystal fibre is air and if cladding has higher
refractive index.

Although we have shown that one can achieve the relative gap width g,, larger than 10%,
one expects that the width can yet be enlarged by considering lattices with more than one
scatterer per unit cell [23], or, using more complicated scatterers, such as cylinders with an

ellipsoidal cross section [24] and coated cylinders, which were outside the scope of this article.



We note that the idea of using highly dispersive metallic and semiconductor components for
photonic structures is not new [7,16,25-28]. Nevertheless, calculations using the plane-wave
method [2] have often been restricted to an extremely low filling fraction f < 1% of metallic
components [7]. Also the main interest was in microwave [16,26] or even in radiofrequency
applications [27]. Surprisingly enough, no systematic search has been made to look for
CPBG’s with a Drude-like behaviour (1) of the dielectric function.

There have been many studies involving 2D structures since the pioneering work of
Maradudin and collaborators [4]. However, these require mostly unrealistic values of the
dielectric contrast 6 to produce a CPBG below infrared wavelengths. The issue of the op-
timal 2D photonic structure with a CPBG below infrared wavelengths has only recently
been addressed by Barra, Cassagne and Jouanin [12]. For a graphite arrangement of dielec-
tric cylinders with a dielectric constant €. in air they showed that the dielectric contrast
d ~ 8 is enough to open a CPBG with ¢, = 6% [12]. The required cylinder diameter to
obtain a CPBG in the visible (around 500 nm) was 80 nm. Although this is technologically
manageable, the required dielectric contrast  ~ 8 is large and strongly limits the choice of
available materials in the visible. Barra, Cassagne and Jouanin suggested the use of GaN
[12]. However, this material is very hard and difficult to etch (see, however, [29] for recent
progress).

Throughout this work cylinders have been assumed to be infinitely long and we considered
only in-plane propagation. However, as has been demonstrated by Labilloy et al. [30], these
facts do not preclude the application of our results to finite structures with finite lengths of
cylinders, provided that their aspect ratio, i.e. height/radius, is reasonably high (= 10).

From practical point of view there are, in addition to the possibility in obtaining a prac-
tical in-plane CPBG, several additional advantages in using metallo-dielectric structures.
Since metals are known to possess high nonlinear susceptibilities [31], an interesting possi-
bilities such as optical switching and bistability [32,33] can be achieved and studied in the
presence of an in-plane CPBG. In addition, a nonzero electric conductivity can be used in

pumping and/or in a fabrication of a new class of displays.
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Finally, a few words about absorption. Since within CPBG’s in the nonabsorptive win-
dow the size parameter of cylinders is x = 277,/ > 5, surface plasmon absorption is avoided
and absorption is entirely determined by bulk properties and hence small. Such a moderate
absorption has been shown to modify band structure only slightly [28]. Recently, a study
of a 1D model showed that a certain degree of absorption can even be advantageous, since
absorption turned out to widen some of the gaps by as much as 50% [34].
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Figure captions

Fig. 1 - If, in a conventionally etched 2D square lattice of air cylinders in silica,
the holes are filled with a material showing a Drude-like behaviour, the band structure
changes drastically from (a) showing no CPBG to (b) that showing four CPBG’s with
wm ~ 0.25, 0.65, 0.69, 0.79 and g, ~ 35%,2.9%, 5.4%, and 11.4%, respectively. In both
cases, the lattice parameters are the same, with cylinder filling fraction f = 65% and
en = 2.16. In the second case, a/\, = 1.1. Note also a band gap for TM polarization
(s-polarization; E parallel to the cylinder axes) below the first band in part (b), which is
characteristic for 2D structures with metallic components [7]. For TE polarization E is

perpendicular to the cylinder axes.

Fig. 2 - The dependence of band egdes and g,, of the largest CPBG on the host dielectric

constant £, for a triangular lattice of silver cylinders, f = 58%, and a/\, = 1.98.

Fig. 3 - Calculated photonic band structure for a triangular lattice of silver cylinders in
silica (f = 58%, a = 650 nm, a/\, = 1.98, ¢, = 2.16). TM and TE bands are drawn
with full and dashed line, respectively. Note three CPBG’s at w,, =~ 1.10, 1.17, 1.25 with

9w = 11.7%, 1%, and 5.4%, respectively.
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