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Depolarization field of spheroidal particles
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A compact analytical formula up to the order of k3, where % is a wave vector, is derived for the depolarization
field E; of a spheroidal particle by performing explicitly the steps of the recipe outlined by Meier and Wokaun
[Opt. Lett. 8, 581 (1983)]. For the static component of E; a general electrostatic formula valid for a particle of
a general shape is rederived within the Meier and Wokaun framework. The dynamic k2-dependent depolariza-
tion component of E; is shown to depend on dynamic geometrical factors, which can be expressed in terms of
the standard geometrical factors of electrostatics. The Meier and Wokaun recipe itself is shown to be equiva-
lent to a long-wavelength limit of the Green’s function technique. The resulting Meier and Wokaun long-
wavelength approximation is found to exhibit a redshift compared against exact T-matrix results. At least for
a sphere, it is possible to get rid of the redshift by assuming a weak nonuniformity of the field E;,, inside a
particle, which can be fully accounted for by a renormalization of the dynamic geometrical factors. My results
may be relevant for various plasmonic, or nanoantenna, applications of spheroidal particles with a dominant
electric dipole scattering, whenever it is necessary to go beyond the Rayleigh approximation and to capture the
essential size-dependent features of scattering, local fields, SERS, hyper-Raman and second-harmonic-
generation enhancements, decay rates, and photophysics of dipolar arrays. © 2009 Optical Society of America

OCIS codes: 350.4238, 290.3770, 240.6680, 250.5403.

1. INTRODUCTION

An ongoing development in plasmonic applications of
small metal particles in biology, energy conversion, medi-
cine, sensing, and many other fields requires a reliable
description of electromagnetic fields inside, in close prox-
imity to, or far away from particles of a general shape,
which can be readily obtained by current experimental
techniques [1,2]. It goes without saying that size provides
important control over many of the physical and chemical
properties of nanoscale materials. The focus of the
present paper is on particles for which the electric dipole
scattering is the dominant one, yet the Rayleigh limit is
insufficient in capturing their essential size-dependent
features exhibited in the behavior of their cross sections
and local field enhancements [3], and in the redshift of
the surface plasmon resonance (SPR) (Section 12.1.1. of
[4]). The above range corresponds essentially to nanopar-
ticles with a volume equivalent to that of a sphere with
the radius between 5 and =50 nm in the visible [3,5-11].
In spite of a number of numerical methods for metal par-
ticles, such as discrete dipole approximation (DDA)
[8-11], the method of moments [12], and the T-matrix
method [13-17], it is insightful to understand the main
features of electromagnetic fields around small particles
in simpler intuitive terms. This is often achieved by ap-
proximating a small particle by an appropriate ellipsoi-
dally shaped particle. The latter is possible for a wide
range of shapes, ranging from a rodlike to disklike shaped
particles. Ellipsoidal particles are also interesting on
their own and have been studied in connection with a size
dependence of surface-enhanced Raman scattering
(SERS) and hyper-Raman enhancements [8-11]. For a
small ellipsoidal particle, the internal field inside a par-
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ticle E;,; can be assumed to a high degree to be homoge-
neous. Indeed, according to the recently proved weak Es-
helby conjecture [18] applied to electrostatics, if a particle
is of elliptic or ellipsoidal in shape, then for any uniform
applied field E, the field E;,, inside the particle is uni-
form. The converse is also true, i.e., that if the field inside
a particle is uniform for all uniform applied fields, then
the particle is of elliptic or ellipsoidal shape. (In two di-
mensions, the so-called strong Eshelby conjecture applies:
if the field inside a particle is uniform for a single uniform
applied field, then the particle is of elliptic shape [18].) A
key issue in describing the optical properties of small par-
ticles is a proportionality relation between the homoge-
neous fields Ej and E;,;. In classical electrodynamics one
can write E;,; as

E,,=E,+Eg (1)

where E, stands for a depolarization field [19].

Let V be the particle volume; &, be the particle dielec-
tric constant; ¢; be the dielectric constant of a surround-
ing host medium; e=¢,/¢;; and k=277\s“e_h/)\, where \ is
the vacuum wavelength, be the wave vector in the sur-
rounding medium. A great deal of insight has been
achieved by the work of Meier and Wokaun [3], who sug-
gested that the depolarization field E; generated by the
polarized matter surrounding the center of the sphere can
be determined in the following steps:

1. Assigning a dipole moment dp(r)=(P/¢g;,)dV, with P
denoting polarization, to each volume element dV of a
particle,

2. calculating the retarded dipolar field dE; generated
by dp(r) at the center, and
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3. integrating dE; over the volume of a sphere.

After performing the above steps for a sphere of radius a
(31,

47 5 2 5
E;j=—-—|(1-x*-i—x° |P, 2
Ly, X-igx (2)

where x=ka stands for the conventional size parameter
[4]. After substituting the result back into the defining
equation for a polarization P,

4mP = g)(e — DE; = £,(e - 1)(Eg + Eg), 3)

the following polarizability (defined via d=¢;,aE(, where
d= %ﬂa‘o’P is the induced dipole moment) results:

— i a3 )
MW — 2x3 .

8+2—(8—1)x2—i?(8—1)

The k2-dependent term in the denominator (x=ka) is usu-
ally called a dynamic depolarization and has been inter-
preted as arising from a dephasing between radiation
emitted by different parts of the sphere. The
k3-dependent term is a radiative reaction correction,
which applies to any oscillating dipole, be it an elemen-
tary molecular dipole or the dipole induced on a small
(nano)particle, and follows from the Abraham-Lorentz
equation [see, e.g., Section 16.2 and Eqs. (16.8) and (16.9)
of [20]].

Surprisingly enough, the above Meier and Wokaun [3]
recipe in determining E; has not yet been carried out ana-
lytically for spheroidal particles, which are a special class
of ellipsoidal particles having two axes of equal length. In-
stead, the relevant integrals for a number of spheroid as-
pect ratios were performed merely numerically (see Sub-
section 3.A of [5]). Apart from that, literature only knows
of two indirect analytic extensions to the case of spheroi-
dal particles. The first derives from the fact that Eq. (4)
can be recast as

1% e-1
=, 5
MW= 41+ Logle - 1) ®)
where
1 y 2 5
Leff=L—§x —igx, (6)

with L being the well-known geometrical factor that ac-
counts for the shape of a particle [cf. Eq. (5.32) of [4]; see
also Subsection 2.A below]. It was postulated that the
spheroid polarizability is obtained by simply replacing the
sphere radius @ in the size parameter by (3V/4m)3, re-
sulting in

Legg=L-— ol Bl - (7

E2(3V\¥3 B3V
3 ( ) 67’

to be substituted in Eq. (5) [6,7]. The point of departure
for the second extension was an observation that Eq. (4)
can be recast as

Alexander Moroz

ag

2k
1-—ap—-i—
aaR 3 “R

8

ayw = B2

where ap, is the static Rayleigh polarizability of a sphere,
e-1

ap =

3
. 9
8+2a ©

Consequently, in the case of a spheroid and an applied
electric field oriented along a spheroid axis, it was postu-
lated that formally formula (8) still applies, but (i) with
ag replaced by the static spheroid polarizability,

1% e-1

T 4ml+L(z-1) (10)

ar

(L=1/3 for a sphere), and (ii) with the sphere radius a re-
placed by the spheroid axis half-length [z, along which
the electric field is applied [8—11]. The validity of such an
approximation, which was termed a modified long-
wavelength approximation (MLWA) [8-11], has been par-
tially justified [8] by comparing it to a so-called third ap-
proximation of electromagnetic scattering by an ellipsoid
in powers of & (i.e., up to the order of k%) by Stevenson
[21]. Despite an obvious difference between ap;y and the
exact polarizability obtained from Mie’s solution for a
sphere in the long-wavelength limit (Appendix A),

-3 e-1 5
AMie = —l@Tm: PERPWE a,
e+2-(6e-12)—-i—(e-1)
10 3

(11)

which results in a shifted SPR position (Appendix B). The
Meier and Wokaun [3] approximation and the resulting
MLWA were shown to generate rather reliable results for
small metal particles in various studies involving scatter-
ing and the local field, SERS, and hyper-Raman enhance-
ments [8-11]. It is worth reminding one here that the
static sphere polarizability [Eq. (9)], which is the Rayleigh
(x—0) limit of expression (11), is not unitary (Appendix
C) and is insufficient in describing essential features of
small metal nanoparticles, such as the size-dependence of
a redshift of the SPR (Section 12.1.1. of [4]) and of local
field enhancements [3].

In what follows, we show, in spite of claims to the con-
trary [8], that a direct extension of the Meier and Wokaun
prescription [3] to spheroidal particles is possible and ob-
tain the spheroid polarizability

aR

2%
1- —Dag-i—
ZE ap—1 3 ap

QW= "3 (12)

where ap is given by Eq. (10) and D is a dynamic geo-
metrical factor (D=1 and lgp=a for a sphere). The outline
of the paper is as follows. In Section 2, the parallel, dE,
and perpendicular, dE, |, components of the depolariza-
tion field are introduced. In Subsection 2.A the volume in-
tegral of a static (~1/r% term) component of dE, is per-
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formed for a particle of any general shape. In Subsection
2.B explicit formulas for the dynamic geometrical factors
in terms of the standard geometrical factors of electro-
statics are provided. In Subsection 2.C the resulting E; is
determined and it is shown that the heuristic Meier and
Wokaun [3] recipe in determining E; is equivalent to a
long-wavelength limit up to the order of k3 of the Green’s
function technique. The results and their applicability are
discussed in Section 3. Subsection 3.A shows that the re-
sulting Meier and Wokaun [3] long-wavelength approxi-
mation (MWLWA) exhibits a redshift compared to exact
T-matrix results. Subsection 3.B shows that, at least for a
sphere, it is possible to get rid of the redshift by assuming
a weak nonuniformity of the fields E;,; and P inside a par-
ticle, which can be fully accounted for by a renormaliza-
tion of the dynamic geometrical factors. We then conclude
with Section 4.

2. DEPOLARIZATION FIELD
The first two steps of the Meier and Wokaun [3] prescrip-
tion for calculating E; can be performed rather straight-

forwardly. Radial and tangential fields produced by a re-
tarded dipole [p]=pe?*" are (Section 2.2.3 of [22])

([p] [zﬂ)
E.=2cos 6 F+— ,

2

cr
_ <[p] [p] [ﬁ])
E5=Slnt9 _3+_2+T . (13)
r Ccr cr

On assuming a harmonic time dependence,

[p1=~iwlp], [B]=-op], (14)

expanding e?*” in powers of kr, retaining terms up to order

k3, and using

E =E,cos 6—E,sin 0,

E =E,sin 0+ E cos 0,

one obtains in the spherical coordinates tight up with the

elementary dipole element dp, and with the polar coordi-

nate aligned along the direction of the polarization vector,
[ 1 k2 2

dEg)=| (3 cos® 0-1) + —(cos® 0+ 1) +i-k> |PdV,

’ r 2r 3

(15)

[ 3sin fcos @ kZsin Ocos 0

dE,; | = +
L re 2r

]PdV. (16)

In addition to [3], the formula for dE; | has also been pro-
vided, since, a priori, it is not clear that the perpendicular
component vanishes for particles of a general shape. To
simplify the notation, we have set ¢;,=1 herein above and
below.

Note in passing that dE; ; does not have a radiating
(proportional to %3) component. On assuming E;,,, and
hence also P, being homogeneous inside a particle (by vir-
tue of the weak Eshelby conjecture [18] this is always sat-
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isfied for a spheroid, and in particular for E, oriented
along a spheroid principal axis), one finds in the spherical
coordinates tight up with a particle center

3ar(P-r)-P #P-1)+P 2k3
E,= 3 + k?+i—P (dV,
r 2r 3

a7

where r=r/r is a unit vector. To this end, it remains to
perform the final step of integrating E,; over the particle
volume. The %3 term in Eq. (17) integrates straightfor-
wardly to i(2k3VP)/3. However, the volume integrals of
the remaining static (~1/r3) and dynamic (~%%) compo-
nents of dE; in Eq. (17) amount to calculating the poten-
tials in a source region (cf. Section VI.2. of [23]) and are
the most demanding steps of the Meier and Wokaun [3]
prescription.

A. Static Depolarization

In this section it will be demonstrated that the volume in-
tegral of the static term can be performed for a particle of
any general shape. First note that the 1/73 term of the de-
polarization field dE,; in Eq. (17) corresponds to a static
dipole field [cf. Eq. (4.13) of Section 4.1 of Jackson’s book
[20]]. Therefore, upon integrating the static component
dEg.1/3 of dE; over a particle volume one expects to ar-
rive at the electrostatics result [19]

Egy=-47L-P, (18)

where the symmetric (Section 5A of [24]) tensor

_ 1 % dSer % r®dS 19)
L=— = s 19
4 W r? e r?

with ® denoting the tensor product of vectors (dyadic) in
IR3, is defined by the surface integral over the surface oV
of V [cf. Egs. (18b) and (44b) of [24]]. L can be concisely
interpreted as a generalized depolarizing dyadic of a par-

ticle (Section 5C of [24]). In particular, for a spheroid L is
a diagonal tensor, i:diag(Lx,Ly ,L,), with L; being the fa-
miliar spheroid geometrical factors of electrostatics. As-

suming the spheroid z axis be the rotational axis, one
finds [4,19]

1-e?
;—(—e+arctanhe)  prolate
e
L,= — , 20
1 y1-e? (20)
| 1- arcsine | oblate
e e
where the hyperbolic arctan can be expressed as
1 1+e
arctanhe =—In s (21)
2 1l-e

and the eccentricity
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prolate
e?={ , . (22)
oblate

The remaining static geometrical factors L,=L, can be de-
termined by using the sum rule (see p. 146, [4])

L,+L,+L,=1. (23)

Our definition of the eccentricity, which has been defined
as the ratio of the difference of the squares of the major
and minor semiaxes divided by the square of the major
semiaxis, is identical to that of Bohren and Huffman [cf.
Eq. (5.33) of [4]; for an oblate spheroid, Landau and Lif-
shitz [19] employed a different definition of e]. The shape
of the oblate spheroid then ranges from a disk (e=1) to a
sphere (e=0); that of the prolate spheroid ranges from a
needle (e=1) to a sphere (e=0).
To this end, note that

3r(P-r)-P _
dEg 3= ———F——dV=[G(r) - PldV,  (24)
r
where
_ 1 arer-1
Gyr)=VeV|-|=—F—, (25)
r r

with 1 being a unit tensor, is a free space Green’s function
in electrostatics. Thus the integral over a particle volume
formally reduces to

Ed;l/r3=f [Go(r) - P1AV. (26)
v

However, a severe obstacle in performing the integral
over a particle volume and at arriving at the final result
[Eq. (18)] is a nonintegrable 1/73 singularity of the inte-

grand, which is now hidden in G(r). Indeed, such a 1/r3
singularity violates the sufficient condition of convergence
of the Kellogg lemma (Appendix D) and the integral in
Eq. (26) does not converge. The 1/r® singularity renders
the integrals, such as that in Eq. (26), ambiguous and de-
pending on the way the integration is performed in close
proximity to the singularity [24]. For instance, following
the convention suggested in Jackson’s textbook (see the
discussion following Eq. (4.20) of Section 4.1 of [20]), the
volume integral for a sphere would yield zero, leading to
an obviously wrong result. Apparently, this has been the
chief reason why the attempts to prove the general for-
mula (18) within the Meier and Wokaun [3] framework
have foundered.

Such nonintegrable 1/73 singularities are at the very
heart of the applicability of the Green’s function method
in the source regions in electrodynamics and electrostat-
ics. According to Section 5C of [24], if it is demanded that
E;.1/r3 on the left-hand side (Ihs) of Eq. (26) corresponds to
the electric field inside the source region generated by a
given distribution of P, the integral in Eq. (26) has to be
interpreted as
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Eg.3=1lim f [Go(r)-PldV-47L-P, (27)
6—0 V-V

which is Eq. (53a) of [24] rewritten in Gauss units. Here
Vsis an arbitrary small volume surrounding the singular-
ity, called the principal volume, and the depolarization

tensor L is that defined by Eq. (19), but with JV replaced
by dVs. Although each of the two terms on the right-hand
side (rhs) of Eq. (27) is dependent on the shape of V5, the
rhs of Eq. (27) is not [24]. Now, by expanding over the
teaching of [24], we follow a point of crucial importance.
The infinitesimally small principal volume Vs is not nec-
essary in Eq. (27), provided that (i) one has advance
knowledge that P is uniform over the particle volume,
and (ii) Vs is of the same shape as V. By the latter it is
meant that Vs is nothing but a scaled down version of V
under the scaling r— Cr, with C being a real constant.
Under the above two hypotheses then, on recalling Eq.
(25),

P
f [Go(r)-P]dV=Vf v -(—)dV
V-V V-V, r

5
P-ds
- ng =0, (28)
AV-Vy) r

because the surface integration over the respective scaled
surfaces Vsand V cancels in the sum. First, the respective
surface integrals have a scale invariant integrand. Sec-
ond, consider the respective outward surface normals of
the volume V-V at the points of the intersection of a ray
emanating from the origin with the surfaces of Vsand V
as illustrated in Fig. 1. Obviously, an outward surface
normal on the surface of ¢V of the volume V-V corre-
sponds to the inward pointing normal of the volume V.
Therefore, the normals at the points, which are related by
the scaling, necessarily point in the opposite directions.
At the same time one makes use of the property that the

defining integral [Eq. (19)] for L is invariant under the
scaling r — Cr of V5 and only depends on the shape of V.
Thus,

Fig. 1. Tlustration of the integration [Eq. (28)] over the surface
of the volume V-V, The surface normals at the intersection of
each ray emanating from the origin with the surfaces of V5 and
V, which are related by scaling, necessarily point in opposite
directions.
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Eg.s=-47L-P, (29)

irrespective if V5 or scaled-up V is employed in the defin-
ing integral [Eq. (19)] for L, thereby yielding the expected
result [Eq. (18)].

In an alternative derivation one can get rid of the prin-
cipal volume considerations by realizing that dE;.;,3 can
be recast as

3r(P-1r)-P P-r
dEg = ——7F——dV=-dVV — - (30)
r r
This enables one to determine E;.1/3 as
P-r
Ejqs3=-Vb=- VJ —dV, (31)
v T

where the potential ® possesses an integrable 1/r2 singu-
larity (Appendix D). Since r/r3=-V(1/r), the integral in
Eq. (31) can be, on using the Gauss theorem, recast into
the integral over the surface ¢V of V resulting in

dS-P
Egq3= V% , (32)
%4

r

where the surface element dS points along the outward
normal to the surface dV of V. It is now permitted to take
V behind the integration sign. The result can be shown to
be equivalent to

#©dS _
Egy = - ff; — | P=—47L-P, (33
v

r

which is the expected result of Eq. (18).

The above two derivations of the general formula [Eq.
(18)] are an example that a simple interchange of the op-
erations of differentiation and integration, such as taking
V behind the integration sign in Eq. (30), is in general for-
bidden when an integrand with a nonintegrable 1/73 or a
higher-order singularity results [24]. If a 1/73 singularity
arises, it is necessary to apply the limiting procedure with
a “principal volume” V5 excluding the singularity, as ex-
emplified by Eq. (27) [24].

B. Dynamic Depolarization

In the present section, the integral of the dynamic term
for a spheroidal particle will be performed. In contrast to
a nonintegrable 1/r® singularity, a 1/r singularity is an
integrable one (Appendix D). Therefore, one can consider
the volume integrals of the respective 1/r terms of dE,
and dE; , given by Egs. (15) and (16), separately. Con-
sider an electric field applied along any of the principal
axes of a spheroid. A spheroid is invariant under the ro-
tation by an angle 7 around its principal axes. Hence, any
of the spheroid principal axes is simultaneously the axis
of at least discrete twofold rotational symmetry, or of dis-
crete rotational symmetry Cs of the second order. But any
depolarization element dE;, changes its orientation to
the opposite one under the rotation by an angle 7 around
the spheroid axis aligned with the electric field. There-
fore,
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f dEd,l;l/r = O, (34)
1%

where dE; | .1;» stands for the 1/r terms in Eq. (16). Ob-
viously, the latter conclusion applies to any particle enjoy-
ing a C, axis of symmetry and with an electric field being
applied along the axis.

In what follows, the z axis will always be the rotational
axis of a spheroid with the half-length ¢ and with perpen-
dicular axes a=b. Turning now to the 1/r terms of
dE g .1/, it will be demonstrated here that, for the electric
field applied along the rotational axis of a spheroid,

cos?0+1 X%
dEd,H;l/r = k2 —dV= _Dza (35)
% % 2r lE

where lp=c and the dynamic geometrical factor D, can be
expressed in terms of the static geometrical factors as fol-
lows:

1+e?
DZ:ZX 1—e2L2+1

prolate
(36)

(1-2e%)L,+1 oblate

In what follows, we denote the dynamic geometrical
factors for an electric field applied parallel and perpen-
dicular to the rotational axis of a spheroid temporarily as
D, and D |, respectively. For a uniform electric field ap-
plied along the direction perpendicular to the rotational
axis of a spheroid, [p=a =0, the respective dynamic geo-
metrical factors D, =D,=D, can be determined from the
knowledge of D, and of the following sum rule:

1
— arctanhe prolate
c e
2-D,+D,=3x{ —— (37)
a V1-e
arcsine oblate
e

The behavior of the dynamic geometrical factors is shown
in Fig. 2. For e — 0 all the factors approach the value of 1,
irrespective of whether the spheroid is prolate or oblate.
The latter ensures that Eq. (12) goes smoothly to Eq. (8)
in the limit. This limiting behavior can also be established
on using the asymptotic formulas in [25], which yield

1-2¢%/5 prolate
Dy=D,~

1+2e%5 oblate ’ (38)
b ch . 1+e%3+e*/5+0(z%  prolate
-D, ~3x
g 1-e%3 - 2¢%/15+0(e®) oblate
(39)

On recalling the definition [Eq. (21)] of the hyperbolic
arctan, the factor D of a prolate spheroid can be shown to
diverge logarithmically as ~-(3/4)In(1-e) for e—1.
On combining this limiting behavior with Eq. (37),
D, «x —\fﬁ[ln(l —e)]—0 as e—1. For oblate spheroids,
one finds on using arcsin 1=7/2 and the fifth equation in
[25], that D j~3mc/(8a)—0 as e—1. On combining this
limiting behavior with Eq. (37), one finds that
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—— oblate /
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0.5 b
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Fig. 2. Dynamic geometrical factors D, and D, for an electric
field applied parallel and perpendicular to the spheroid rota-
tional axis, respectively. As an illustration, for spheroids with the
aspect ratio 2:1, 3:1, 4:1, 5:1, and 6:1 the eccentricity takes on the
values of =~0.866, ~0.943, =~0.968, =~0.98, and ~0.986, respec-
tively. For prolate spheroids, D;— %, whereas for oblate spheroids
D, =97/16 as e—1.

D, =(9m)/16~=1.767 as e— 1. This is confirmed by Fig. 2,
which displays the behavior of D, and D,.
Summary of the proof. An ellipsoid defined by

x2 y2 22

(?+ﬁ+(§=1’ (40)

is, upon the substitution
x=ax', y=by', z=cz', (41)
transformed into a unit sphere,
@)+@)+E)=1 (42)
The radius vector square is
r2=a?(x")? +b%(y")? + c2(2")?, (43)

and the corresponding primed and unprimed volume ele-
ments are related by dV=abcdV’. On using cylindrical co-
ordinates (p,z’, ),

r2 — a2p2 + 02(2/)2 — aZ[p2 + (02/(12)(2,/)2]’

dV =a’cpdpdz'de. (44)

For an electric field applied along the jth spheroid princi-
pal axis

1
cos® 0+ 1=—(x7 +1?), (45)
r

where (xq,x9,x3)=(x,y,2z). Thus, for a field applied along
the z axis, one has to deal with the integral
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cos20+1
——dV
v

2r
1 VG2 p? +2(c¥a)(z))?
=27mac | dz’
0 0

[p2 + (CZ/a2)(Zr)2]3/2pdp’
(46)

where the trivial integration over ¢ has already been
performed and use was made of the mirror symmetry
z' —-z' of the integrand. In the case of the sum (c/a)
X(Dy+D,)+D,, the result is proportional to [y(dV/2r),
which is determined in Appendix E. The initial integra-
tion over the polar coordinate p € [0,1~-(z")?] is identical
for both prolate and oblate spheroids and can be straight-
forwardly performed on using the quadrature formulas in
[25]. A subsequent integration over the coordinate
z' €(0,1) then depends on a particular spheroid type. In
the case of D,, the latter can be performed on using the
respective quadrature formulas in [25].

C. Final Result for a Uniform E;,;

On combining the partial results, Egs. (18) and (35), to-
gether with the radiation reaction term, one arrives for a
spheroidal particle at the depolarization field

2V_ 2RV
1|-P

Ed=—47r(i——D—i—— (47)
47

3 4w

where, like the static geometrical factors, the dynamic
geometrical factors have been assembled into a diagonal
dynamic depolarization tensor l_)=diag(Dx/a,Dy/ b,D,/c).
After substituting the result for E; back into the defining
equation (3) for the polarization P aligned along the
spheroid principal axis, the polarizability [Eq. (12)] re-
sults. Thereby, in contrast to Stevenson’s approximation
[21], the Meier and Wokaun [3] prescription enables one
to capture the essential size-dependence features of the
polarizability of small spherical and spheroidal particles
[cf. Egs. (4) and (12)] in a single compact analytical for-
mula. However, a complete description of the size depen-
dence of the polarizability requires that the size depen-
dence of the dielectric function is also taken into account
[7-11] (for recent progress see [26]).

Finally, we show that, not unexpectedly, the Meier and
Wokaun [3] recipe in determining E, is equivalent to the
long-wavelength limit up to the order of k2 of the exact
formula of the Green’s function technique

E,=k2lim j [G(r)-PldV-47L-P  (48)
V-V,

5—0

(the formula, Eq. (48), follows on substituting
J=-id7we, P in Eq. (18a) of [24]), where
VeV ) R

G(r,r')=GR) = (1 +— R

e (49)

with R=r-r’ and R=|R|, is the so-called electric Green’s
function for an infinite homogeneous medium. Indeed, on

substituting the long-wavelength expansion of G in pow-
ers of k&,
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reor+l 2k3
+ k%n7; +O(k?),

Gm=ﬁ

1|3rer-1
re 2r

(50)

into Eq. (48) one finds that the resulting integrand is
nothing but the expression in curly brackets in Eq. (17).

3. DISCUSSION AND OUTLOOK

A. Numerical Results

In Fig. 3, the results for the extinction efficiency (extinc-
tion cross section divided by w72, where r,, is an
equivalent-volume-sphere radius) of an oblate silver
spheroid with r,, of 20 nm are shown for the major to mi-
nor axis ratio of 5:1. Figure 4 shows the same for a prolate
silver spheroid with an equivalent-volume-sphere radius
r'ep 0f 40 nm and the major to minor axis ratio of 4:1. In
the case of various long-wavelength approximations
(LWA), extinction cross sections were calculated according
to Eq. (C3) with 2ik3a/3, where « is an appropriate polar-
izability, being substituted for Tz;. The exact T-matrix re-
sults (solid curve) include the contribution of higher-order
multipoles and have been obtained by the Mishchenko
code [14] with a recent improvement [15]. The T-matrix
code, freely available at http:/www.wave-scattering.com/
codes.html, was run for a plane wave incidence perpen-
dicular to the rotational symmetry axis (i.e., with the code
parameters THETO=THET=90 and PHIO=PHI=0). All
the plots were generated on using the bulk silver dielec-
tric function [27] without any size correction.

In agreement with the analytic result for spherical par-
ticles (Appendix B), the resulting MWLWA [Eq. (12);
dashed-dotted lines] is found to be redshifted with regard
to the exact T-matrix results. Overall, MWLWA appears
to provide only a minor improvement over the conven-
tional MLWA [Eq. (8); dotted curve], which is character-
ized by constant dynamic geometrical factors

351 —— T-matrix i
Rayleigh
30 1T v Lo MLWA B
AN T MWLWA
251 VAR T— with E  averaging [
c AERY
2 204
8]
=
X151
104
54
0

400 450 500 550 600 650
Wavelength [nm]

Fig. 3. (Color online) Comparison of the extinction efficiency ob-
tained in the Rayleigh limit, by MLWA, and MWLWA, against
the exact T-matrix method results. The results are shown for an
oblate silver spheroidal particle with the major to minor axis ra-
tio of 5:1 and an equivalent-volume-sphere radius of 20 nm (a
=b=~34.2 and ¢~6.84 nm). Electric field is oriented perpendicu-
lar to the rotational symmetry axis.
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Fig. 4. (Color online) Comparison of the extinction efficiency ob-
tained in the Rayleigh limit, by MLWA, MWLWA, interpolated
LWA, and MWLWA with a nonuniform P against the exact
T-matrix method results. The results are shown for a prolate sil-
ver spheroidal particle with the major to minor axis ratio of 4:1
and an equivalent-volume-sphere radius of 40 nm (a=b
~25.2 nm and ¢~100.8 nm). Electric field is oriented along the
rotational symmetry axis.

5“=5i=1. (51)

MWLWA yields better results for prolate spheroids, but it
is worse for oblate spheroids. Clearly, the Rayleigh ap-
proximation [Eq. (10); dashed curves] is not suited for the
spheroidal particle considered.

B. Renormalized Dynamic Geometrical Factors

So far, the field E,,;, and the resulting polarization P,
within a particle have been assumed to be homogeneous.
Yet, for the particle dimensions considered here, varia-
tions of E;,; in excess of 10% are not unusual. Moreover,
MWLWA singles the particle center out as a special point.
However, at least for a sphere, |E;,;| takes on a local mini-
mum at the particle center for wavelengths around the
SPR position. Therefore, calculating E; at a particle cen-
ter may not provide the best approximation to an average
E, inside the particle.

Obviously, the only way to improve MWLWA is to take
into account an actual field profile inside a particle. In
fact, in the case of a sphere, a nonuniform field profile in-
side a particle can account for the whole redshift. Indeed,
according to Stevenson [21], the leading correction to a
uniform E,,, for spheroidal particles is of the order of 2.
By virtue of Egs. (15) and (17), it is enough to consider
only the singular 1/7% term, since corrections to the re-
maining k2 and %3 terms will produce corrections of the
order of at least £%. A point of crucial importance is that
the angular integration of the 1/73 term yields identically
zero. Therefore, only the #-dependent part of the full cor-
rection, which would modify the angular part of the 1/r°
term so that it yields a nonzero contribution, is needed for
our purposes. Assuming E, polarized along the axis of ro-
tational symmetry, let us consider a simple angular de-
pendence of the polarization of the form
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1
P, = P( 1+ §k2r2 sin? 0) , (52)

which satisfies all the above requirements including a lo-
cal minimum of |P| at the particle center. On substituting
such a weakly nonuniform P back into Eqgs. (15) and (17),
the net effect is to replace the dynamic depolarization
term in Eqgs. (15) and (17) by

5cos20-3cos*d 5/2-3
2 P= (P -)k2. (53)
2r 2r

For a sphere, one arrives on using Eq. (88) at

47 4 2
E;=—-—(1--x2-i-x%|P, (54)
gy 5 3

being substituted for Eq. (2). It can be straightforwardly
verified that this delivers the polarizability, which yields
the SPR peak position in the extinction efficiency coincid-
ing with the exact result [Eq. (B1)] by Bohren and Huff-
man [4] (cf. Appendix B).

In the spheroid case, the very same angular depen-
dence of polarization of Eq. (52) leads to the dynamic geo-
metrical factors D, of Eq. (55) being substituted by (see
quadrature formulas of Appendix E)

(5e? - 3)L 1 at
— L. +— rolate
3 (1-e?)e? ° ¢2 P
D,,,= 1 X -2 . (55)

5—[(2¢*+3)L, - 1] oblate
e

Clearly, the dependence of Eq. (52) does not account for
the whole redshift in the spheroid case (short-dashed
curve in Fig. 4). An argument that some other spatial de-
pendence of the polarization followed by a subsequent
renormalization of the dynamic geometrical factors may
get rid of the whole redshift in the spheroid case is pro-
vided by the following empirical dynamic geometric fac-
tor:

D,, =0.37+0.63D. (56)

The results generated by the interpolated LWA (dashed-
dotted-dotted curve), which makes use of the factors, are
shown in Figs. 4 and 5. In all the cases, electric field is
oriented along the rotational symmetry axis. The interpo-
lated LWA accurately matches the SPR position, height,
and linewidth of the exact results for noble particles with
an equivalent-volume-sphere radius of up to =50 nm in
the visible. (A discussion of this criterion for spherical
particles, which derives from the estimate of relative
magnitudes of the electric dipole moment on one hand
against that of the magnetic dipole moment and electric
quadrupole moment on the other hand, can be found on p.
583 of [3] and in the very last two paragraphs of Subsec-
tion 3.B of [5].) Note in passing that the linewidth I" di-
rectly determines the plasmon dephasing time T'93=2#4/T,
where % is the Planck constant, the quality factor @ of the
resonance at the SPR frequency o, via the formula
Q= w,,s/T, and the local field enhancement factor |f] (in a
harmonic model |f]=@Q).
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Fig. 5. (Color online) Comparison of the interpolated LWA
(dashed-dotted-dotted curves) against the exact T-matrix method
results (solid curves) for prolate silver spheroidal particles. From
left to right, spheroids with the major to minor axis ratios in-
creasing from 2:1 to 6:1 and with (r,,;a=b;c)~(60;47.6;95.2),
(50; 34.7; 104), (40; 25.2; 100.8), (30; 17.5; 87.7), and
(20;11;66) nm. Electric field is oriented along the rotational
symmetry axis.

C. Related Approaches

In an attempt to improve the MWLWA, Meier and Wok-
aun [3] and Wokaun [7] have proposed to replace the ex-
citing field E, with its volume average. In the case of a
plane wave incident on a sphere this results, up to the or-
der of x2, in the exciting field

1 x?
vaEO cos(k-r)dV=Ejy 1- 1—0 . (57)

This in turn leads to e-1 in the numerator of Eq. (4) be-
ing replaced by (e—1)(1-x2/10) [3,7], or, up to the order of
x2, equivalently to the polarizability

e-1
AMW;m = %2 23
+2-9e-12)—-i—(e-1
P> (9¢ )10 l3(8 )

a®.  (58)

At first sight, the latter polarizability appears to be closer
to the exact expression (11), yet it still leads to the very
same offset SPR position [see Eq. (B2)] as its predecessor
of Eq. (4) does. The same procedure for a spheroid results
in either (e—1)(1-%2¢2/10) or (¢—1)(1-%2a?/10) replacing
£—1 in the numerator of Eq. (10), depending on whether k
is parallel or perpendicular to the axis of axial symmetry.
However, the Meier and Wokaun [3] and Wokaun [7] pro-
posal is different from ours, since it does not lead to any
change in dynamic geometric factors. Moreover, as Figs. 3
and 4 demonstrate, replacing the exciting field E; with its
volume average (short-dashed-dotted curve in figures)
does not bring any appreciable change in the calculated
results for the extinction efficiency.

Interestingly enough, the work by Kuwata et al. [28]
has anticipated dynamic depolarization factors by purely
empirical formula obtained by best fit to numerical re-
sults, in which case dynamic depolarization factors were
fitted by a polynomial of the third order in L,. In contrast,
formula (56) together with the analytic results of the pa-
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per suggest that a linear L, dependence, but with
“e”-dependent coefficients, may be enough.

4. SUMMARY AND CONCLUSIONS

A compact analytical formula [Eq. (47)] was provided for
the depolarization field E; of a spheroidal particle by car-
rying out explicitly the steps of the Meier and Wokaun
procedure [3]. For the static component of E,, the electro-
static formula [Eq. (18)] valid for a particle of a general
shape was rederived within the Meier and Wokaun [3]
framework. The dynamic depolarization component of E,
was shown to depend on dynamic geometrical factors. Ex-
plicit expressions [Egs. (36) and (37)] for the dynamic geo-
metrical factors were given in terms of the standard geo-
metrical factors [Egs. (20) and (23)] of electrostatics.
Limitations of the Meier and Wokaun [3] procedure,
which was shown to be equivalent to a long-wavelength
limit of the Green’s function technique and to exhibit a
redshift compared to exact T-matrix results, were exam-
ined. A weak 6-dependent nonuniformity of the polariza-
tion P inside a particle was shown to induce a change in
the dynamic geometrical factors [Eqgs. (54) and (55)]. On
the example of a sphere it was demonstrated that such a
change can compensate for the redshift of the Meier and
Wokaun [3] long-wavelength approximation (LWA). An
appropriate 6-dependent nonuniformity of P, the exis-
tence of which has been indirectly vindicated by the em-
pirical interpolated LWA and that is almost an exact
match of the exact T-matrix results, may do the same for
spheroids. Results of the present paper may be relevant
for various plasmonic, or nanoantenna, applications of
spheroidal particles with a dominant electric dipole scat-
tering whenever it is necessary to go beyond the Rayleigh
approximation and capture the essential size-dependent
features of scattering, local fields, SERS, hyper-Raman,
and second-harmonic-generation enhancements [8,9], de-
cay rates, and photophysics of dipolar arrays [5].

APPENDIX A: T-MATRIX IN THE
LONG-WAVELENGTH LIMIT FOR
SPHERICAL PARTICLES

In the case of a homogeneous sphere, the respective
T-matrix elements in a given /th angular momentum
channel are (see Eqs. (2.127) of [29])

m[xjy(x)]'71(x5) = o) [x i (x5) '
mlach(6)],(cs) = By (x)]"

A= (A1)

where m=u,/u;, for TM mode (A=M), m=¢,/¢, for TM
mode (A=E), j; and h;=j;+in; are the conventional spheri-
cal functions (see Section 10 of Ref. [30]), and primes de-
notes the derivative with respect to the argument. (The
T-matrix elements correspond to the minus of the Mie ex-
pansion coefficients as given by Bohren and Huffman [4].)
On using the asymptotic expansions (10.1.2) and (10.1.3)
of [30] for j; and n; as z— 0 up to the first three orders one
arrives at
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x2
ot (6—D[1—&+1H5}

Tp1=1—
BL=t 3 x2 28
2 (e-1)(e+10)— —i—(e~1
€+ (e=1)(e+ )10 i 3 (e-1)

(A2)

The limiting expression [Eq. (A2)] for the 7' matrix coin-
cides up to the order of x? with Eq. (45) of Kerker et al.
[31]. The latter, however, does not comprise the
k3-dependent radiation reaction term. The asymptotic
form [Eq. (A2)] can be recast as

23 e-1
Tg =i—
£ L3 x2 2x°
+2-(6e-12)— —i—(e-1
€ (6e )10 13(6 )

, (A3)

which facilitates a comparison with Eq. (4) resulting from
the Meier and Wokaun prescription [3]. Meier and Wok-
aun [3] provided the following limiting expression (by cor-
recting for a missing overall (2/3) prefactor, most prob-
ably due to a misprint in Eq. (5) of [3])

x2
2x3 (6—1)(1—1—())

Tgi=1—

k1 l3 x2 23
+2-(7e-10)—-i—(e-1
€ (7€ )10 l3(€ )

(Ad)

The latter can be shown to be equivalent to Eq. (A3) by
multiplying both its numerator and its denominator by
f=1+x2/10. As a rule, by multiplying the numerator and
denominator of Eq. (A3) by f=1+(ae+b)x?/10, where a
and b are arbitrary constants, one arrives at an equiva-
lent expression, which, up to the order of x?, differs from
Eq. (A3) merely in different coefficients of the x? terms.

Note in passing that it does not make sense to convert
the limiting expression [Eq. (A2)] into a power series in
the size parameter x. The reason behind is that the re-
spective expansion coefficients have e+2 in the denomina-
tor and become singular at the proximity of a SPR. (See,
e.g., such an expansion for the Mie coefficient a; on p. 295
of [32], which is reproduced as Eq. (11) in [33].)

APPENDIX B: DIPOLAR SURFACE PLASMON
RESONANCE POSITION IN THE EXACT
LONG-WAVELENGTH LIMIT AND IN THE
MEIER AND WORKAUN APPROXIMATION

The dipolar SPR position up to the order of x? is given by
the following equation for the real part of e=€¢'+i€” (see
Section 12.1.1 of [4]):

1242
T~ 2 —. B1
€ 5 (B1)

Contrary to that, Egs. (4) and (58) imply that the real part
of the denominator vanishes for
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€ =-2-3x2 (B2)

Obviously, this differs from the result [Eq. (B1)] of Bohren
and Huffman [4] by an additional redshift of the SPR po-
sition by 3x2/5.

It is worth remembering that all zeros of the T-matrix
elements are complex. The distance of complex zeros to
the real axis is a measure of a corresponding resonance
linewidth. That a dipolar T-matrix element 7'z;=—a; can-
not have a zero for a real x even for a real € is made trans-
parent due to the presence of the radiative reaction term
in Eq. (A2). Therefore, in a contradiction to the assertion
in Section 12.1.1 of Ref. [4], the denominators of Mie’s co-
efficients cannot vanish at real values of x. In the exact
long-wavelength limit [Eq. (A2)], one finds for the dipolar
SPR position, determined as a zero of the real part of the
denominator of Tz, in Eq. (A2),

24 + (€)? 2¢” 6
€=-2- ——— 52— —x3 - —x*, (B3)
10 3 7

This formula can be viewed as an extension of the result
[Eq. (B1)] of Bohren and Huffman [4] for absorbing par-
ticles. Indeed, the above formula reduces to Eq. (B1) for
€'=0. An absorption (¢’>0) provides an additional red
shift to a SPR case compared with the €’=0 case. An ad-
ditional consequence of Eq. (B3) with respect to the Bo-
hren and Huffman [4] expression [Eq. (B1)] is that a tem-
perature or light-intensity tuning of the SPR position may
also be affected by changes in €.

APPENDIX C: UNITARITY

According to Egs. (2.135), (2.137), and (2.138) of [29], one
finds in the dipolar limit

67 ,
Osca =~ ﬁ|TE1| 5 (C]-)
™ 2
Uabs*ﬁ(1—|1+2TE1| )s (C2)
6
Tiot =~ — ﬁ Re TEl' (03)

(The above equations can easily be rephrased in terms of
a particle polarizability on substituting 2ik3«/3 for Tgy.)
One then, somewhat misleadingly, refers to a unitarity, if
the substitution of a given approximation to 7'z; into the
above equations yields o= 0geq+ Taps-

It is straightforward to shown that any approximation
that yields a purely imaginary Ty, li.e., a purely real po-
larizability «, such as that given by the Rayleigh limit of
Eq. (9) for real €] violates the unitarity. Indeed, on using
the defining equation for the S matrix, S=1+2T, one
would arrive at

SS*=(1+2T)(1+2T*)=1+4ReT+4|T?=1+4|T?>1,
(C4)

which is in contradiction with the exact bounds on a
physical S matrix in potential scattering,

Alexander Moroz

0=<SS*=<1. (C5)

In general, the bounds [Eq. (C5)] imply
1
—Z—|T|2sReTs—|T\2<0:>

3 2k3

(C6)

—Jal<Imas< ?|a/|2+

8k’

where the second bound follows from the first one on sub-
stituting 2ik3a/3 for T.

APPENDIX D: IMPROPER INTEGRALS FOR
POTENTIALS IN THE SOURCE REGION

Let us consider a function f that becomes infinite only at a
single point P of the region V of integration. Then the in-
tegral

I= f v, (D1)
\4

is said to be convergent, or to exist, provided

lim v, (D2)
5—0 V-uv

exists, where v is a variable regular region subject to the
sole restrictions that (i) it has the single point P in its in-
terior, and (ii) its maximum chord length does not exceed
S (see Section VI.2. of [23]).

Kellogg’s lemma (see lemma III on p. 148 of [23]): The
integral

av
f_ﬂ’ 0<pB<3, (D3)
Vr

is convergent, and for all regular regions V of the same
volume, it is greatest when V is a sphere about the singu-
lar point P.

APPENDIX E: COS* ® QUADRATURE
FORMULAS

For E, polarized along the axis of rotational symmetry
one finds in the case of a prolate spheroid

p
1
— arctanhe n=0
e
0032”0d y 1 . )
V= ~ n= , (E1
2r e 1-¢2 (E1)
1[ L, 1 )
—_ — - — n=
2| 1-¢2 3
\

whereas, for an oblate spheroid,
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p
I1-¢?
arcsin e n=0
cos? 6 ¢
2 dV=maX (1-€?)L, n=1
r

1-e2 )

?[1—3(1—2 )Lz] n=2

(E2)
For a sphere the above formulas reduce to
cos?" ¢ wa?
dv= . (E3)
2r 2n+1
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