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Abstract. Formulae for the density of states (DOS) and integrated DOS (IDOS) are
discussed for the case when the dielectric constant ε is a general function of frequency.
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Introduction.- Photonic crystals are characterized by a periodically modulated dielectric

constant ε. Some of such structures occur in nature, for instance, opals and nanostructured

colour wings of butterflies [1]. There is a common belief that in the near future photonic

crystals will give us the same control over photons as ordinary crystals do over electrons

[2]. At the same time, photonic structures are of great promise to become a laboratory

for testing fundamental processes involving interactions of radiation with matter in novel

conditions.

Similar to the case of electrons moving in a periodic potential, photons can propagate

in a given direction inside a photonic crystal only if their frequency falls within an allowed

band. In the presence of impurities, localized photon modes can appear with frequencies

within the forbidden bands (gaps), which separate the allowed bands (see Fig. 1). These

localized modes can serve as resonance cavities with a very high quality factor [3]. In

a finite crystal these modes are responsible for sharp transmission peaks at frequencies

within a frequency gap of a parent system. Numerous applications involving impurities,
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for instance, efficient bandpass filters, channel drop filters, and waveguide crossing without

cross-talk have been suggested thus far.

In the Schrödinger case, for an electron moving in a potential V , the density of states

(DOS) n(E) and the integrated DOS (IDOS) N(E) are defined as

n(E) =

∫

n(E,x) dx, N(E) =

∫

ω

−∞

n(t) dt, (1)

where n(E,x) is the local DOS (LDOS),

n(E,x) = −
1

π
Im G(E;x,x). (2)

G(E;x,x) here is the Green function, defined as the limit

G(E;x,x) = lim
s→+0

〈

x
∣

∣ [E + is − H]−1
∣

∣ x
〉

, (3)

where H is the Hamiltonian. According to its definition, N(E) describes the number of

modes with E ′ ≤ E and dN(E) = n(E) dE. Formally,

n(E) = −
1

π
Im Tr G(E), (4)

N(E) =
1

π
Im Tr ln G(E). (5)

One can show that Im G(E;x,x) ≤ 0 for any self-adjoint operator H. Hence, as expected,

both n(E) and N(E) are positively defined.

The above formulae are derived under the assumption that the potential V is energy

independent. However, for the Maxwell equations, the analogue of a potential V is

V = −ω2(ε − 1)/c2, (6)

where ω is frequency, c is the speed of light in vacuum (set to one in the following),

and the analogue of energy is E = ω2/c2. Moreover, in all realistic cases the dielectric

constant ε is a complicated function of frequency. Thus the potential in the Maxwell

case is both explicitly and implicitly frequency dependent. Therefore a question arises

what is the analogue of the formulae (4) and (5) in the Maxwell case. Note that previous

discussions of a single impurity in a photonic crystal [4, 5, 6] dealt with the idealistic case

of a nondispersive ε.
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Figure 1: Substitutional impurity levels within the first forbidden band of a parent struc-
ture composed of alternating dielectric layers with ε1 = 1 and ε2 = 12. A is the length of
a unit cell. The width of impurity layer is d2 (d2/A = 0.4), the same as of the layers with
the dielectric constant ε2.

Dispersive impurity.- It has been surprising to find out that in the dispersive Maxwell’s

case the formula (5) for the IDOS is still valid. Consequently, the change in the IDOS of

a parent system induced by an impurity is given by

∆N(E) = −
1

π
Im Tr ln[1 − G(E)W ] (7)

where G(E) is the Green function of unperturbed system and W is the difference of

potentials with and without the impurity. However, the DOS of a parent system and the

change in the DOS induced by an impurity are given by

n(E) = −
1

π
Im Tr [G(E)(1 − dV/dE)] , ∆n(E) = −

1

π
Im Tr [G(E)(1 − dW/dE)] .

(8)

Note that in the nondispersive case, the first formula in (8) reduces to

n(E) = −
1

π
Im Tr

{

G(E)
d

dω2
[ω2ε(ω)]

}

= −
1

π
Im Tr [G(E) ε] , (9)

which has been used, for example, in [7].



As shown in [8], combining formulae (8) with the photonic analogue of the KKR

method [9] allows one to treat efficiently the problem of dispersive impurities in a photonic

crystal. Indeed, the impurity spectrum calculations using the plane-wave method are quite

time consuming. The number of plane waves used to achieve convergence within 1% is

typically 5× 102, 2.5× 104, and 7.5× 105 in one, two, and three dimensions, respectively,

[4]. On the other hand, using the photonic analogue of the KKR method [9], the impurity

spectrum calculation in one dimension involves only matrices of the size 2 × 2. Even in

three dimensions, the size of matrices involved do not exceed 300 × 300 [8].
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