Alexander Moroz  Scientific Publications *
Coreshell (nano)particles * Nanoshells * Multilayered sphere *
Spheres, spheroids, rods, pillar, cylinders, Chebyshev particles *
Tmatrix code * Photonic crystals of nanoparticles * Optical trapping *
Lattice sums * Ewald summation *
AharonovBohm scattering * Divergent series
My Scientific Publications
Optical singularities and plasmonic properties of individual metal nanoparticles
 I. L. Rasskazov, A. Moroz, and P. S. Carney,
Electromagnetic energy in multilayered spherical particles,
J. Opt. Soc. Am. A 36(9),
15911601 (2019).
[arXiv:1905.02057 [physics.optics]]
(The article has been supplemented with Matlab code
stratify.)
 A. Moroz, Electron meanfree path in metal coated nanowires,
J. Opt. Soc. Am. B 28(5), 11301138 (2011). [pdf]
(The article has been supplemented with a detailed
Supporting Information. See also an
accompanying F77 code fsc2d.f to calculate
the meanfree path for various model cases discussed in the article.)
 A. Moroz, Localized resonances of composite particles,
J. Phys. Chem. C 113(52), 2160421610 (2009).
(Among other demonstrates that any composite which
justifies an effectivemedium MaxwellGarnett description
is in fact an artificial polaritonic like medium.)
 A. Moroz, Depolarization field of spheroidal particles,
J. Opt. Soc. Am. B 26(3), 517527 (2009) [pdf].
Belonged temporarily to the mostdownloaded publications of J. Opt. Soc. Am. B in the field of
plasmonics.
(Shows that the hypothesis of a uniform polarization within
a spheroidal particle is incompatible with the exact limit of polarizability
in the small particle limit up to the order x**2 when the size parameter x> 0.
Accompanying F77 code sphrd.f to determine extinction efficiency
in various longwavelength approximations discussed in the article.
See here for online supplementary material.
See also my worksheet involving some intermediary calculations.)
 A. Moroz, Electron meanfree path in a spherical shell geometry,
J. Phys. Chem. C 112(29), 1064110652 (2008).
(The article has been supplemented with a detailed
Electronic Supporting Information. See also an accompanying F77 code
fsc.f to calculate the meanfree path
for various model cases discussed in the article.)
 J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater,
A. van Blaaderen, and A. Polman,
Optical cavity modes in gold shell colloids,
J. Appl. Phys. 103(12), 123105 (2008). [pdf]
(Accompanying F77 code sphere.f; read compilation
and further instructions here.
Download cavity.ppt to play a movie of cavity modes.)
 J. J. Penninkhof, A. Moroz, A. Polman, and A. van Blaaderen,
Optical properties of spherical and oblate spheroidal gold shell colloids,
J. Phys. Chem. C 112(11), 41464150 (2008). [pdf] [story
behind this article]
(Accompanying F77 code sphere.f;
read compilation and further instructions here.)
 A. Moroz, Improvement of Mishchenko's Tmatrix code for absorbing
particles,
Appl. Opt. 44(17), 36043609 (2005). [pdf]
(Accompanying F77 code is available here together with
routines zger.f and zsur.f;
see also routines zge.f and zsu.f
for multiplication from the other side.)
Publications on basic quantumoptics models
 A. Moroz, On a fully compensated formula for cubic roots, in preparation.
 A. Moroz, On uniqueness of HeineStieltjes polynomials for second order
finitedifference equations with Hahn operator,
in preparation
 A. Moroz and A. E. Miroshnichenko,
Constraint polynomial approach  an alternative to the functional Bethe Ansatz method?,
Eur. Phys. J. Plus 135:73 (2020).
[free view via shared link]
[arXiv:1807.11871 [quantph]]
(See also an accompanying slide presentation
and a worksheet.)
 A. Moroz and A. E. Miroshnichenko,
On beautiful analytic structure of the Smatrix,
New J. Phys. 21, 103035 (2019).
[arXiv:1906.04031 [quantph]]
(For an exponentially decaying potential, analytic structure of the
swave Smatrix can be determined up to the slightest detail, including position of all
its poles and their residui. Beautiful hidden structures can be revealed by its domain coloring.)
 A. Moroz and A. E. Miroshnichenko,
On the Heisenberg condition in the presence of redundant poles of the Smatrix,
Europhys. Lett. 126(3), 30003 (2019).
[arXiv:1904.03227 [mathph]]
(Any bound state is related to a pole of the Smatrix should on the physical sheet.
Here you will learn that the Smatrix may have infinite number of
poles on the physical sheet without a single bound state.)
 A. Moroz,
A unified treatment of polynomial solutions and constraint polynomials of the Rabi models,
J. Phys. A: Math. Theor. 51, 295201 (2018).
[arxiv:1712.09371 [quantph]]
(See also an accompanying F77 codes constrpol.f
and cnstrplw.f
to calculate constraint polynomials discussed in the article.)
 A. Moroz,
Generalized Rabi models: diagonalization in the spin subspace and
differential operators of Dunkl type,
Europhys. Lett. 113(5), 50004 (2016).
[arXiv:1601.06721 [quantph]]
 A. Moroz, On uniqueness of HeineStieltjes polynomials for second order
finitedifference equations,
J. Phys. A: Math. Theor. 48(41), 415201 (2015).
[arXiv:1506.00978 [mathph]]
(The general second order finitedifference equation has two linearly independent
solutions, yet at most one of the two can be a polynomial solution.)
 A. Moroz,
Haydock's recursive solution of selfadjoint problems. Discrete spectrum,
Ann. Phys. (N.Y.) 351, 960974 (2014).
(The article has been supplemented with a
Supporting Information.
See also my slide presentation.)
 A. Moroz, Quantum models with spectrum generated by the flows of polynomial zeros,
J. Phys. A: Math. Theor. 47(49), 495204 (2014).
[arXiv:1403.3773 [mathph]]
 A. Moroz, A hidden analytic structure of the Rabi model,
Ann. Phys. (N.Y.) 340(1), 252266 (2014).
[arXiv:1305.2595 [quantph]]
 A. Moroz, On solvability and integrability of the Rabi model,
Ann. Phys. (N.Y.) 338, 319340 (2013).
[cited 5x as arXiv:1302.2565]
[arXiv:1302.2565 [quantph]]
 A. Moroz, On unorthodox solutions of the Bloch equations,
[arXiv:1208.5736 [quantph]]
 A. Moroz, On the spectrum of a class of quantum models,
Europhys. Lett. 100, 60010 (2012).
[arxiv:1209.3265 [quantph]]
 A. Moroz, Comment on ``Integrability of the Rabi model"
[arXiv:1205.3139 [quantph]].
(An extensive supplementary information including the F77 source code
rabif.f
can be found here.)
Publications on modified fluorescence and
decay rates of atoms interacting with simple (metal) nanoparticles
 C. Graf, D. J. van den Heuvel, A. Moroz, H. C. Gerritsen,
and A. van Blaaderen, Enhanced photostability and reduced lifetimes
of dye molecules in colloidal gold shell particles,
in preparation.
 G. P. Acuna, M. Bucher, I. Stein, C. Steinhauer, A. Kuzyk,
P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani,
T. Liedl, F. Simmel, and P. Tinnefeld,
Distance dependence of singlefluorophore quenching by gold nanoparticles studied on DNA origami,
ACS Nano 6(4), 31893195 (2012).
[pdf]
 A. Moroz, A superconvergent representation of the GerstenNitzan and FordWeber
nonradiative rates,
J. Phys. Chem. C 115(40), 1954619556 (2011).
[arXiv:1108.2884]
(Provides alternative representations of the quasistatic nonradiative
rates, which comprise four elementary analytic functions
and a modified multipole series taking into account
residual multipole contributions. The analytic functions could be
arranged hierarchically according to decreasing singularity at the short
distance limit d > 0, ranging from d**(3) over d**(1) to log (d/a).
An extensive supplementary information including the F77 source code
gn.f
can be found here.)
 A. Moroz, Nonradiative decay of a dipole emitter close to a metallic nanoparticle:
Importance of higherorder multipole contributions,
Opt. Commun. 283(10), 22772287 (2010).
[arXiv:0909.4878]
(Shows importance of the size correction to a metal dielectric function in describing the nonradiative rates near the dipolar surface plasmon resonance. Accompanying F77 code CRMNT and limited MS Windows
executable.)
 A. Moroz, Spectroscopic properties of a twolevel atom
interacting with a complex spherical nanoshell,
Chem. Phys. 317(1), 115 (2005).
(published online on 9th August 2005)
[quantph/0412094]
(see its online Appendix A for a MS Windows executable; source F77 code CHEWFS)
 A. Moroz, A recursive transfermatrix solution for a
dipole radiating inside and outside a stratified sphere,
Ann.
Phys. (NY) 315(2), 352418 (2005). (published online on 7th October 2004)
[story behind this article]
(accompanying F77 code CHEW and limited MS Windows
executable.)
 M. J. A. de Dood, L. H. Slooff, A. Moroz, A. Polman, and A. van Blaaderen,
Modified spontaneous emission in erbiumdoped SiO2 spherical colloids,
Appl. Phys. Lett. 79, 35853587 (2001).
[pdf]
(Shows importance of the concentration quenching for a reliable description
of spontaneous emission.)
 M. J. A. de Dood, L. H. Slooff, A. Moroz, A. Polman, and A. van Blaaderen,
Local optical density of states in SiO2 spherical microcavities:
theory and experiment,
Phys. Rev. A 64, 033807 (2001).
[pdf]
Publications on synthetic dimensions
 L. J. Maczewsky, K. Wang, A. A. Dovgiy, A. E. Miroshnichenko, A. Moroz, M. Ehrhardt, M. Heinrich,
D. N. Christodoulides, A. Szameit, and A. A. Sukhorukov,
Synthesising multidimensional excitation dynamics and localisation transition in onedimensional lattices,
Nature Photonics 14, 7681 (2020).
[based on arXiv:1903.07883 [physics.optics]]
See its highlight ``Optical circuits cross dimensions" by A. Amo and O. Zilberberg in
Nature Photonics 14, 6869 (2020)
and my presentation on the subject during AAMP XVI, September 11, 2019.
Enjoy also PhD thesis
Multidimensional photonics in synthetic lattices of Kai Wang providing an additional information.

K. Wang, L. J. Maczewsky, A. A. Dovgiy, A. E. Miroshnichenko, A. Moroz, D. N. Christodoulides,
A. Szameit, and A. A. Sukhorukov,
Highdimensional synthetic lattice with enhanced defect sensitivity in planar photonic structures,
in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online)
(Optical Society of America, 2018),
paper NpTh3I.3

L. J. Maczewsky, , K. Wang, A. A. Dovgiy, A. E. Miroshnichenko, A. Moroz, M. Ehrhardt, M. Heinrich,
D. N. Christodoulides, A. Szameit, and A. A. Sukhorukov,
Experimental realization of high dimensional synthetic lattices in planar photonic structures,
in 2018 Conference on Lasers and ElectroOptics, OSA Technical Digest (Optical Society of America, 2018),
paper JTh5B.7

L. J. Maczewsky, A. A. Dovgiy, A. E. Miroshnichenko, A. Moroz, D. N. Christodoulides, A. Szameit, and A. A. Sukhorukov,
Experimental Realization of Exact Mapping from MultiDimensional to Planar MicroPhotonic Lattices,
in 2017 European Conference on Lasers and ElectroOptics and European Quantum Electronics Conference,
OSA Technical Digest (Optical Society of America, 2017),
paper CK_13_1
Publications on optical tweezers
 A. van der Horst, P. D. J. van Oostrum, A. Moroz, A. van Blaaderen, and M. Dogterom,
Highrefractive index particles
trapped in dynamic arrays of dualbeam optical tweezers,
Appl. Opt. 47(17), 31963202 (2008).
[pdf]
(See accompanying F77 code opttrap.f; for compilation and
further instructions see here.)
 A. Moroz, Metallodielectric diamond and zincblende photonic structures,
Phys. Rev. B 66, 115109 (2002).
[condmat/0209188]
[pdf]
(See discussion subsection "Fabrication" and Fig. 23 therein for
the optical trapping of metal coredielectric shell particles.)
Publications on exponentially convergent lattice sums and on general aspects of diffraction and scattering
of classical and quantum waves off periodic structures
 A. Moroz, Multem for complex lattices and coated particles,
in preparation.
 A. Moroz, An efficient method for the scattering and diffraction
of classical and quantum waves in two dimensions, in preparation.
 A. Moroz and H. van der Lem, KorringaKohnRostoker method in two
dimensions, in preparation.
 A. Moroz, On layer KorringaKohnRostoker method in two dimensions,
in preparation.
 A. Moroz, Quasiperiodic Green's functions of the Helmholtz and Laplace equations,
J. Phys. A: Math. Gen.
39, 1124711282 (2006).
[erratum]
[mathph/0602021]
[supplementary information]
[Provides a unified treatment of all the subperiodic cases
(i.e. 1D and 2D periodicity in 3D,
together with 1D periodicity in 2D) within
the spirit of Kambe's approach and shows how to derive
all the results for the separate
lattice sums in a single go.]
 A. Moroz, On the computation of the freespace doublyperiodic
Green's function of the threedimensional Helmholtz equation,
J. Electromagn. Waves Appl. 16, 457465 (2002).
[pdf]
[Routine dlsumf2in3.f
for the calculation of Kambe's lattice sums and code gff2in3.f.
The latter can be used as a main code that generates
the lattice points, calls the routines that calculate
spherical harmonics and spherical Bessel functions, and helps you to obtain
the freespace Green's function given the total lattice sum D_L
generated by dlsumf2in3.f.
Supplementary information.]
 A. Moroz, Exponentially convergent lattice sums,
Opt. Lett. 26(15), 11191121 (2001).
[pdf]
(Accompanying F77 code OLA;
supplementary information)
Publications on metallic, metallodielectric, and purely dielectric photonic crystals, and metamaterials
 A. Moroz, An optimization study of two dimensional
photonic crystals, in preparation.
 A. Moroz, Raul Garcia Esparza, and Peter de Maagt,
Wide Bandwith Artificial Magnetic Conductor, in preparation.
 E. C. M. Vermolen, J. H. J. Thijssen, A. Moroz, M. Megens, and A. van Blaaderen,
Comparing photonic band structure calculation methods for diamond and pyrochlore crystals,
Optics Express 17(9), 69526961 (2009).
[pdf]
 V. Yannopapas and A. Moroz, Negative refractive index metamaterials
from inherently nonmagnetic materials for deep infrared to terahertz frequency ranges,
J. Phys.: Condens. Matter. 17(25), 37173734 (2005).
(minor erratum)
[pdf]
(accompanying F77 code EFFE2P;
supplementary information)
 D. A. Mazurenko, A. Moroz, C. M. Graf, A. van Blaaderen, and
J. I. Dijkhuis, Threedimensional silicagold coreshell photonic crystal:
linear reflection and ultrafast nonlinear optical properties,
Photonic Crystal Materials and Nanostructures, Photonics Europe 2004,
Proceedings of SPIE Vol. 5450 (2004), pp. 569577.
[pdf]
(for further details see D. A. Mazurenko
PhD thesis on Ultrafast optical switching in threedimensional photonic crystals;
Sec. 5 describes linear optical properties of a coreshell silicagold photonic crystal,
Sec. 6 elaborates on ultrafast dynamics in a silicagold coreshell photonic crystal,
and Sec. 7 is devoted to coherent vibrations of submicron gold shells.)
 I. Ederra, R. Gonzalo, C. Mann, A. Moroz, and P. de Maagt,
(Sub)mmWave Components and Subsystems based on
EBG Technology, Proceedings of
International Conference on Electromagnetics in Advanced Applications (ICEAA 2003)
8.12.09.2003 Torino, Italy, pp. 643646. [pdf]
(Herein a 3D photonic LKKR calculations with nonspherical particles were
performed for the very first time.)
 K. P. Velikov, W. L. Vos, A. Moroz, and A. van Blaaderen,
Metallodielectric photonic glasses,
Phys. Rev. B 69, 075108 (2004).
[pdf]
 H. van der Lem, A. Moroz, and A. Tip, Band structure of absorptive
twodimensional photonic crystals,
J. Opt. Soc.
Am. B 20, 13341341 (2003).
[pdf]
 V. Poborchii, T. Tada, T. Kanayama, and A. Moroz,
Silvercoated siliconpillar photonic crystals: enhancement
of a photonic band gap,
Appl. Phys. Lett. 82, 508510 (2003).
[pdf]
(try MS Windows executable rta1in2k.exe)
 A. Moroz, Metallodielectric diamond and zincblende photonic
structures,
Phys. Rev. B 66, 115109 (2002).
[condmat/0209188]
[pdf]
(supplementary information)
 A. Moroz, Photonic crystals with small metal inclusions, Photonics Prague 2002,
Proceedings of SPIE Vol. 5036 (2003), pp. 407412.
[pdf]
 A. Moroz, Photonic crystals at nearinfrared and optical wavelengths,
in ``Organic Optoelectronic Materials, Processing and Devices",
contribution K7.5, Proceedings of
the MRS Fall Meeting 2001  vol. 708, BB symposium.
[pdf]
 K. P. Velikov, A. Moroz, and A. van Blaaderen, Photonic crystals of coreshell
colloidal particles,
Appl. Phys. Lett. 80, 4951 (2002).
[pdf]
 M. J. A. de Dood, E. Snoeks, A. Moroz, and A. Polman,
Design and optimization of 2D photonic crystal waveguides based on silicon,
IEE Opt.
Quant. Elec. 34(13), 145159 (2002).
 A. Moroz, Towards complete photonic band gap
structures below infrared wavelengths, Proceedings of the NATO ASI
Photonic Crystals and Light Localization in the
21st Century (Kluwer, Dordrecht, 2001), pp. pp. 373382.
 M. J. A. de Dood, L. H. Slooff, T. M. Hensen, D. L. J. Vossen, A. Moroz, T. Zijlstra,
E. W. J. M. van der Drift, A. van Blaaderen, and A. Polman,
1, 2 and 3 dimensional photonic materials made using ion beams: Fabrication and optical
density of states, Proceedings of the NATO ASI
Photonic Crystals
and Light Localization in the 21st Century (Kluwer, Dordrecht, 2001),
pp. pp. 555566.
[pdf]
 A. Moroz, A. Tip, and J.M. Combes, Absorption in periodic
layered structures,
Synthetic Metals 116, 481484 (2001).
[condmat/0004004]
[pdf]
 A. Tip, A. Moroz, and J.M. Combes, Band
structure of absorptive photonic crystals,
J.
Phys. A: Math. Gen. 33, 62236252 (2000).
[mparc/00181]
 H. van der Lem and A. Moroz, Towards twodimensional complete
photonicbandgap structures below infrared wavelengths,
J.
Opt. A: Pure Appl. Opt. 2, 395399 (2000). [pdf]
[The first article to emphasize the importance of filling the pores
of a purely dielectric 2D air hole photonic crystal with silver, resulting in
a 2D lattice of metallic wires embedded in a dielectric matrix,
in order to obtain an elusive complete photonic bandgap (i.e. common for
both polarizations and for all propagation directions) in the visible]
 A. Moroz,
``A remark on the isotropic model".
 A. Moroz, Single dispersive impurity in a photonic crystal,
Proceeding of the Academic Colloquium ``Quantum Optics of Small Structures",
D. Lenstra, T. D. Visser, and K. A. H. Leeuwen eds.
(The Royal Netherlands Academy of Arts and Sciences, Amsterdam, 2000), pp. 2932.
[pdf]
 A. Moroz, Photonic crystals of coated metallic spheres,
Europhys. Lett. 50, 466472 (2000).
[condmat/0003518]
[pdf]
 A. Moroz, Threedimensional complete photonic bandgap structures
in the visible,
Phys. Rev. Lett. 83, 52745277 (1999).
[Demonstrated for the first time
the possiblity of a complete photonic bandgap (i.e. common for
both polarizations and for all propagation directions) in a
3D fcc lattice of metallic spheres embedded in a dielectric matrix.]
 A. Moroz, Minima and maxima of the local
density of states for onedimensional periodic systems,
Europhys. Lett. 46, 419424 (1999).
(Calculate the local density of states of a onedimensional toy model.)
 A. Moroz and A. Tip,
Resonanceinduced effects in photonic crystals,
J.
Phys.: Condens. Matter 11, 25032512 (1999).
[physics/9903042]
 A. Moroz, A simple formula for the Lgap width of a
facecenteredcubic photonic crystal,
J. Opt. A: Pure Appl. Opt. 1, 471475 (1999).
[physics/9903022]
 A. Moroz and C. Sommers,
Photonic band gaps of
threedimensional facecentered cubic lattices,
J. Phys.: Condens. Matter 11, 9971008 (1999).
[physics/9807057]
[story behind this article]
[Among other, gave the values of a critical dielectric contrast required
for opening a complete photonic bandgap (i.e. common for
both polarizations and for all propagation directions) in a
dielectric 3D fcc lattice of spheres for various sphere filling fractions.]
 A. Moroz and A. Tip, Onshell Tmatrices in multiple
scattering,
Phys. Lett. A 235, 195199 (1997).
[mathph/9807023]
 A. Moroz, Densityofstates calculation and multiple scattering
theory for photons,
Phys. Rev. B 51, 20682081 (1995).
[condmat/9404049]
 A. Moroz, Inward and outward integral equations and the KKR
method for photons,
J.
Phys.: Condens. Matter 6, 171182 (1994).
[condmat/9310040]
Publications on scattering in the AharonovBohm potential
(Including persistent currents, the Hall effect, calculation of the
2nd virial coefficient for interacting anyons, and cosmic strings. The results appear to also
be relevant to some issues involving graphene.)
 A. Moroz, Comments on ``Differential cross section for
AharonovBohm effect with nonstandard boundary conditions'',
Europhys. Lett. 47(2), 273274 (1999).
[quantph/9811087]
[independent opinion]
 A. Moroz, On indices of the Dirac operator in the
nonFredholm case,
Mod. Phys. Lett. A 11(12), 979986 (1996).
[hepth/9511121]
(Update ref. to F. Gesztesy and B. Simon, J. Funct. Analysis 79,
91 (1988).)
 A. Moroz, The singleparticle density of states,
phaseshift flip, bound states, and a resonance in the presence
of an AharonovBohm potential,
Phys. Rev. A 53, 669694 (1996).
[condmat/9504107]
 A. Moroz, The singleparticle density of states
and the resonance in the AharonovBohm potential,
Mod. Phys. Lett. B 9(22), 14071417 (1995).
[condmat/9602041]
 A. Comtet, A. Moroz, and S. Ouvry,
Persistent current of free electrons in the plane,
Phys. Rev. Lett. 74, 828 (1995).
[condmat/9404078]
 A. Moroz, The AharonovCasher theorem and the axial
anomaly in the AharonovBohm potential,
Phys. Lett. B 358, 305311 (1995).
[hepth/9511099]
Publications on asymptotic expansions and their summability
 has been highlighted by
Wikipedia
 A. Moroz, Critical exponent of the localization length for the symplectic case,
J. Phys. A: Math. Gen. 29, 289294 (1996).
[condmat/9507061]
 A. Moroz, Strong asymptotic conditions or short guide
to using summability methods,
Czech. J. Phys. B42(8), 753763 (1992).
 A. Moroz, Novel summability method generalizing the Borel method,
Czech. J. Phys. B40(7), 705726 (1990).
 A. Moroz, Summability method for a hornshaped region,
Commun. Math. Phys. 133, 369381 (1990)
[open access].
 A. Moroz, Analytic continuation by means of the methods of divergent series,
Czech.
J. Math. 40, 200212 (1990).
[pdf]
 A. Moroz, Quantum field
theories as a problem of resummation,
PhD thesis, Prague, 1991.
Various subject: coupled waveguides, BEC, the Hofstadter problem, etc.
 A. Moroz, Comment on ``New analytic solution of Schrödinger's equation",
Europhys. Lett. 117, 40001 (2017).
[arxiv:1510.04669 [quantph]]
 K. N. Ilinski and A. Moroz,
Aspect ratio analysis for ground states of bosons in anisotropic
magnetic traps, special issue of
J. Res. Natl. Inst.
Stand. Technol. 101, 567573 (1996).
[condmat/9512155]
 A. Moroz, Upper and lower bounds on the partition
function of the Hofstadter model,
Mod. Phys. Lett. B 10(9), 409416 (1996).
[condmat/9601083]
 A. Moroz and J. Fischer, A surprise in sum rules
 modulating factors.
[hepph/9602313]
 A. Moroz, Dimensional reduction of a generalized flux problem,
Mod. Phys. Lett. B 6(12), 717727 (1992).
[condmat/9206005]
 A. Moroz, The Majorana fermions for quantum s=1/2 antiferromagnet?
[condmat/9207013]
 A. Moroz and V. Sverak, Angular momenta in a planar field
theory,
Mod. Phys. Lett. A 6(2), 137141 (1991).

A. A. Dovgiy, A. E. Miroshnichenko, A. Moroz, A. Szameit, D. Christodoulides, and A. A. Sukhorukov,
Optical Simulation of Nonlinear TwistedRing Defect States with Planar Waveguide Arrays,
in Frontiers in Optics 2016, OSA Technical Digest (Optical Society of America, 2016),
paper JTh2A.141

A. A. Dovgiy, A. Miroshnichenko, A. Moroz, A. Szameit, D. N. Christodoulides, and A. A. Sukhorukov,
Optical simulation of multidimensional nonlinear defect states with planar waveguide arrays,
in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), OSA Technical Digest
(Optical Society of America, 2016),
paper NTh1A.4

V. N. Astratov, S. P. Ashili, J. P. Franchak, A. J. Saltzman, M. E. Sullivan,
D. J. Brady, S. V. Filin, A. I. Puzynin, V. N. Samoilov, and A. Moroz,
Polycrystalline low index contrast opals: Towards novel multimodal
spectroscopy of diffusive sources of light,
Conference on Lasers and ElectroOptics (CLEO) (IEEE, Piscataway, 2004)
vol. 2, 2 pp., paper CThP4
 H. van der Lem, A. Moroz, and A. Tip, Band structures of absorptive
2D photonic crystals, Proceedings of the 24th ESTEC Antenna Workshop on
Innovative Periodic Antennas: Photonic Bandgap, Fractal and Frequency
Selective Surfaces (ESA 2001), pp. 8384.
 A. Moroz, Photonic band gap calculations: Inward and outward
integral equations and the KKR method, in Confined electrons and photons:
New physics and applications, edited by E. Burstein and C. Weisbuch
(Plenum Press, New York, 1995) pp. 741746.
 A. Moroz, The singleparticle density of states,
phaseshift flip, bound states, and a resonance in the presence
of an AharonovBohm potential.
Proceedings of the XIth International Congress of Mathematical Physics
(International Press, Boston, 1995), pp. 700701.
 K. N. Ilinski and A. Moroz, Aspect ratio analysis for ground states
of bosons in anisotropic traps,
Czech. J. Phys. B 46 (Suppl. S1), 549550 (1996). Proceedings
of Low Temperatures 21.
 on "Nonperturbative Quantum Field Theory, NATO ASI B 185 Proceeding,
edited by G. 't Hooft et al., (Plenum Press, 1989)",
Acta Aplicandae Mathematica 21, 350 (1990).
 on "FiniteTemperature Field Theory by J.I. Kapusta
(Cambridge University Press)", Acta Aplicandae Mathematica 23, 199200 (1991).
 on "Optoelectronics of Solar Cells by Greg P. Smestad
(SPIE Press, 2002)",
Optics
and Photonics News, June 2004, p. 40
[full review is here].
 on "Nonlinear Photonic Crystals by R. E. Slusher and B. J. Eggleton (Eds.)
(Springer Verlag, 2003)", Optics and Photonics News, April 2005, p. 46.
 on "Optical Near Fields by M. Ohtsu and K. Kobayashi
(Springer, Heidelberg, 2004)",
Optics and Photonics News, February 2006, p. 40.
 on "Introduction to Complex Mediums for Optics and Electromagnetics, by
Werner S. Weiglhofer and Akhlesh Lakhtakia (eds.)
(SPIE Press Monograph Vol. PM123, 2003)",
Optics
and Photonics News, March 2006, p. 55.
[
My freely available electromagnetic, photonic crystals, plasmonic and (nano)photonics F77
computer codes
]
[
Elementary properties of
localized surface plasmon resonances
]
[
Refreshing some of plasmonic headlines
]
[
Photonic Crystals Headlines 25 Years Old, at Least ...

An Early History of
Acoustic and Photonic Crystals
]
[
Selected Links on Photonics,
Photonic Crystals, Numerical Codes, Free Software
]
[
Main page

My personal webpage 
List of my publications
in Scitation

My most frequently
cited articles]
Alexander Moroz,
last updated on January 30, 2020